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Frequency and Severity of Tree and Other Fixed Object Crashes in Florida, 2006-

2013 

 

Abstract: 

 

Roadside trees provide benefits to drivers such as traffic calming, roadway definition, and 

driver stress reduction. However, trees are also one of several roadway infrastructure 

elements commonly involved in single-vehicle crashes. In this study, Florida Highway 

Saftey and Motor Vehicle records were analyzed to: (1) evaluate the relative frequency of 

tree-related crashes compared to other fixed-object crashes; (2) assess the impact of 

roadway-, vehicle-, and driver-related factors on tree crash frequency; and (3) compare 

the severity of tree crashes relative to other single vehicle crashes. In accessing 3,033,041 

crash records from 2006-2013 (all complete years), we identified 565,303 single-vehicle 

accidents (10.5%) and 47,341 tree-related accidents (1.6%). Trees were the fourth most 

common fixed object hit in urban single-vehicle accidents and the second most common 

fixed object hit in rural single-vehicle accidents. Driver gender, vehicle type, light 

conditions, weather conditions, and land use all were correlated with the frequency. 

Additionally, the injuries associated with tree crashes were more severe than all other 

single-vehicle crash types except vehicle rollovers.  
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Introduction: 

Risk is a combination of the (1) probability of an event occurring and (2) the 

consequence of the event should it occur (Frank & Bernanke, 2004). When urban 

foresters and other professionals assess tree risk, they typically focus on the probability 

that a tree (or part of a tree) will fail and strike a target such as a person or property.  

Smiley et al. (2011) describes a tree as hazardous if it has both a structural defect that 

predisposes the tree to failure, and a target that would be struck if it were to fall.  Smiley 

et al. (2011) goes on to say that healthy trees may be hazardous if they obstruct motorist’s 

vision, raise sidewalks, interfere with utilities or are particularly attractant to lighting. To 

the extent trees are evaluated as roadside hazards, research in arboriculture and urban 

forestry has been limited to the risk posed by a tree or branch should falling on, or 

immediately in front of, a passing vehicle (Ellison, 2005; Rooney et al., 2005; Laefer & 

Pradhan, 2006; Klein et al., 2016). In contrast, research from transportation and planning 

has largely focused on trees their potential involvement in fixed-objects vehicle crashes 

(Zeigler, 1986; Turner and Mansfield, 1990; Lee and Mannering, 1999; Naderi, 2003; 

Dumbaugh, 2005; Holdridge et al., 2005; Dumbaugh, 2006; Mok et al., 2006; Wolf and 

Bratton, 2006; Abdin et al, 2009; and Park and Abdel-Aty, 2015).  

 

Roadside vegetation is a significant component of roadway planning. Between 2008 and 

2013, the Florida (United States) Department of Transportation spent $209 million on 

highway landscaping (Khachatryan et al., 2014). This roadside beautification led to $46 

million in annual output impacts (total state expenditure) and $28 million in annual value 

added impacts (wages, increased property income, proprietor income, indirect business 
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taxes, and capital consumption) (Khachatryan et al., 2014). While harder to quantify than 

the economic benefits noted above, tree-lined roadsides increase the aesthetic appeal of 

streetscape vegetation, reduce driver stress, and facilitate a more pleasant driving 

experience when compared to more barren streetscapes (Wolf, 2003). These benefits may 

be especially important for drivers who become frustrated with traffic congestion and 

long commutes (Cackowski and Nasar, 2003). The psychological health benefits of 

roadside vegetation are an important consideration for landscape planning.   

 

At the same time, streetscape trees are fixed objects that can be struck during run-off-

road (ROR) accidents (Turner & Mansfield, 1990; Wolf & Bratton, 2006). The relative 

risk of tree crashes is dependent on a number of variables, including roadway design, 

roadway conditions, vehicle weight, and roadway geometry (Wolf & Bratton, 2006; 

Abdin, et al., 2009). However, there is some disagreement among researchers as to the 

effect of fixed objects (such as trees) on crash frequency. Some researchers such as 

Ewing & Dumbaugh (2009) argue that roadside trees promote safety by enhancing 

roadway definition, whereas other researchers posit that roadside trees are hazardous 

(Hall et al.; 1976; Zeigler, 1986; Turner & Mansfield, 1990).  

 

In addition to crash frequency, it is important to identify crash-related factors associated 

with severe injuries or death. Holdridge et al. (2005), modeled injury severity in fixed 

object crashes and found that trees, utility poles and the leading ends of guardrails 

increase the probability of fatal injuries in ROR crashes. Harvey and Aultman-Hall 
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(2015) conducted a logistic regression study of 244,684 crashes in New York City 

between 2011-2013 and found that smaller, more enclosed streetscapes were 

characterized by less severe crashes. The authors suggested that a more constrained 

streetscape makes drivers more aware of potential hazards and causes them to engage in 

less risky driving behavior (Harvey and Aultman-Hall, 2015). While these works offer 

key insights, other factors related to the driver, vehicle, site, and fixed object struck 

during an ROR collision may impact crash severity.  

 

Quantifying the relative frequency and severity of tree-related, single-vehicle ROR 

crashes is an important step in assessing past roadside vegetation management efforts and 

developing future management plans. In assessing the frequency and severity of tree-

related crashes, we posed the following research questions: (1) What is the impact of land 

use (urban/rural), vehicle type, light conditions, and weather conditions on tree and non-

tree crash frequency? and (2) How does the severity of tree-relating accidents compared 

to other single-vehicle accidents? Our results highlight the potential costs of roadside 

trees with regard to injury and death. In identifying these potential costs, those managing 

trees along roadways to can begin to assess whether the benefits of roadside trees 

outweigh the potential risks. 

 

Materials and Methods:  

Archival vehicle accident data collected by the Florida Department of Highway Safety 

and Motor Vehicles (FL DHSMV) from 2006-2014 were analyzed between December 

2016 and February 2017. These data was collected from reports (HSMV Long Report 
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Form 90005) filled out by police officers responding to crash events. The DHSMV data 

included 3,033,048 crashes in total. Of these, only single-vehicle crashes were included 

in our analysis of crash severity. Within the single-vehicle crash data, motorcycle crashes 

and commercial vehicle crashes were excluded – leaving a final dataset containing 

323,581 unique events. Data were standardized as needed to account for revisions made 

to the long report form in 2011. For example, before 2011, there were multiple ways to 

record seatbelt use (e.g., lap belt only, shoulder harness only, both lap belt and shoulder 

harness). With the revised form, this was a simple yes or no response. In cases there were 

differences in data resolution were noted, choices were aggregated (if possible) to make 

direct comparisons. In some cases, the 2011 revisions made it impossible to match 

variables across the entire data set. These variables were ultimately dropped from the 

analysis.  

  

Chi-square tests were used to assess the impact of various driver-, site-, and vehicle-

related factors influenced crash frequency. These tests were completed using the 

prop.test() function in, R (R Development Core Team, 2017). Specifically, we assessed 

whether or not the number of tree-related collisions varied by driver gender, suspected 

alcohol/drug use (i.e., yes vs no), vehicle type, land use (i.e., rural vs. urban), light 

conditions (i.e., daylight, dark with lighting, dark, dusk/dawn), and weather conditions 

(i.e., clear, cloudy, low visibility, precipitation, severe winds).  

 

In modeling crash severity, we utilized the variable “First Harmful Event” to determine 

what type of single vehicle collision occurred (e.g., striking one of several fixed objects, 
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rollover, or simply going off the road). The DHSMV (2008) defines “First Harmful 

Event” as the “injury or damage producing event which characterizes the crash type 

and identifies the nature of the first harmful event.” “First Harmful Event” (hereafter, 

“Crash Type”) levels were standardized as one of the following: tree, barrier, ditch, 

fence, no fixed object (and no rollover), pole, sign, structure, water, and rollover. 

Additional predictors beyond first harmful event are listed in Table 1: 

 

Table 1. Predictor variables and the associated levels/baselines used when modeling 

injury severity for single-vehicle accidents in Florida (United States) from 2006 – 

2013.  

 

Predictor Levels of Predictor Base Level for Model 

Gender Female Female Male 
   
Age Continuous Variable None 
   

Seatbelt Use Yes No No 
   

Airbag Deployed Yes No No 
   

Occupant Ejected 
Yes 

No No 
Partially 

   

Drug/Alcohol Use Yes No No 
   
Estimated Speed Continuous Variable None 
   

Land Use Rural Rural Urban 
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Road Type 

County/State 

County/State Forest 
Interstate/Tollway 

Local 
   

Shoulder Type 
Curb 

Curb Paved 
Unpaved 

   

Road Surface Conditions 

Dry 

Dry Loose 
Slippery 

Standing Water 
   

Light Conditions 

Daylight 

Daylight Dark 
Dark w/ Lighting 

Dawn/Dusk 
   

Weather Conditions 

Clear 

Clear 
Cloudy 

Low Visibility 
Precipitation 
Severe Winds 

   

Crash Type 

Barrier 

Tree 

Ditch 
Fence 

No Fixed Object 
Other 
Pole 

Rollover 
Sign 

Structure 
Tree 

Water 
 

The outcome variable “severity” was recorded as on of four levels: none, minor, severe, 

and fatal. “None” corresponded to no injury. “Minor” injuries were defined as injuries 

that were non-incapacitating and non-disabling (DHSMV, 2008). Examples of minor 

injuries included lacerations, scrapes, or bruises. “Major” injuries were defined as injuries 
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that were incapacitating or disabling (DHSMV, 2008). Examples of major injuries 

included broken bones and severed limbs. “Fatal” injuries were defined as injuries 

resulting in death within 30 days of the crash (DHSMV, 2008). 

 

Crash severity was modeled via ordered logistic regression using the polr() function from 

the MASS package in R (Venables and Ripley, 2002). Odds ratios and their associated 

95% confidence intervals were calculated for greater ease in interpretation. A P-value of 

0.05 was chosen as the threshold for statistical significance for all of the above-mention 

tests.   

 

Results and Discussion: 

RELATIVE FREQUENCY OF TREE RELATED CRASHES. Of the 323,581 single-

vehicle crashes analyzed, 47,341 (14.6%) involved a collision with a tree. In urban areas, 

tree collisions were the fourth most common crash type observed (Fig. 1). In rural areas, 

tree related crash types were the second most common crash type. That said, the 

percentage of tree-related crashes was quite similar for urban (14.2%) and rural (15.0%) 

settings (Fig. 1). Given the large sample size, this small difference was still statistically 

significant (P-value<0.0001)   

 

Figure 1. Comparison of single-vehicle (excluding commercial vehicles and 

motorcycles) crash types for urban and rural settings. The figure represents 323,581 

crash events that occurred in Florida (United States) from 2006-2013.  
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Parked car crashes not shown as less than 1% (0.6% for urban and 0.0% for rural). 

 

Beyond land use, the relative proportion of tree-related crashes differed given light 

condition (P-value<0.0001). Nearly a quarter (23.1%) of single vehicle crashes occurring 

at night under lighted conditions involved a tree. In contrast, trees were only involved in 
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10.0% of crashes occurring during the day, 9.8% of crashes occurring at dusk or dawn, 

and 8.2% of crashes occurring at night without supplemental lighting. The difference in 

proportions between “dark with lighting” and the other three lighting scenarios 

(especially dark without lighting) suggests street lighting may be ineffective in 

preventing tree collisions. The presence or absence of lighting at night may impact 

driving behavior (perhaps drivers traveling along unlit roads are more cautious). It may 

also highlight a relationship between illuminated roadways, tree crashes, and some 

unmeasured predictor variable.   

 

Given the data available, we were not able to normalize for vehicle-miles travelled/road 

use intensity. Therefore, it is possible that differences in crash frequency could be 

attributed to greater road use, rather than the variable in question (e.g., lit roadways are 

traveled more often than unlit roadways which is reflected in the elevated accident rates).    

 

Of course, the inability of the authors to normalize road use intensity limits any definitive 

extrapolations.  In addition, trees and lights may co-occur, leading to greater crash 

frequency in a “dark with lighting” scenario.  In order to fully understand the effect of 

lighting on trees, it would be necessary to normalize road use intensity and the presence 

of trees in varying scenarios.  

 

The proportion of single vehicle crashes involving trees also varied by weather conditions 

(P-value <0.0001). The order of tree crash frequency for weather conditions (most 

frequent to least frequent) is (1) severe crosswinds (14.29%), (2) low visibility (9.48%), 
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(3) clear weather (6.8%), (4) precipitation (4.48%), (5) cloudy weather (3.72%). An 

equality of proportions test for drug/alcohol use showed no significant difference in tree 

crash frequency for drug/alcohol use as compared to no drug/alcohol use (proportion of 

tree crashes for drug/alcohol use 10.83%, proportion of tree crashes for no drug/alcohol 

use 11%, p=0.2521). It should be noted that this does not imply that drivers under the 

influence of drugs/alcohol are as safe as sober drivers (we do not have the data to address 

this question). 

 

IMPACT OF CRASH TYPE AND OTHER FACTORS ON INJURY SEVERITY.  

 

Of the 47,341 tree-related crashes, 22,061 (46.6%) were without injury (Figure 2). The 

second most common injury level for tree-related crashes was “minor.” There were 

19,315 tree-related accidents (40.8%) where minor injuries were recorded. Severe 

injuries and death were the two least common consequences of a tree-related car accident, 

making up 10.8% and 1.7% of crashes recorded (Fig. 2).  
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Figure 2. The proportion of tree-related crashes that resulted in no, minor, severe, and 

fatal injuries. The figure depicts the relative severity of 47,341 tree-related car crashes 

recorded in Florida (United States) from 2006 to 2013.  

 

The results of the regression model show that tree crashes were more severe than all other 

single vehicle crash types except rollovers (P-value <0.0001; Table 2). In Table 2, the 

crash type “Tree” serves as the base level for the crash type factor. The odds ratios 

correspond to the odds of crash type “tree” being one severity level higher (e.g., minor as 

opposed to none, severe as opposed to minor, and fatal as opposed to severe) than each of 

the listed crash types. When compared to all non-rollover crash types, tree-related crashes 
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were 1.2 to 2.5 times more likely to have an increased the severity (all other factors held 

constant, Table 2) than crashes with other fixed objects. Crashes with signs and structures 

tended to be among the least severe as compared to tree related crashes.  

 

In contrast, rollover crashes were 1.5 times more likely to have an increased severity 

level than tree crashes (all other factors held constant, Table 2).  In fact, rollovers were 

more severe than all other single vehicle crash types.  Rollovers were nearly twice as 

prevalent (proportionally) in rural areas compared to urban areas (proportion of rollovers 

in urban areas 6.1%, proportion of rollovers in rural areas 14.72%, P-value <0.0001).   
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Tab1e 2. Factors influencing crash severity (i.e. none vs. minor vs. severe vs. fatal) for single vehicle crashes. Model derived 

from 323,581 single-vehicle crash events (not including commercial vehicles and motorcycles) that occurred in Florida (United 

States) from 2006-2013.  

Predictor Variable Coefficient Standard Error P-value Odds Ratio Lower 95% CI Upper 95% CI 
Gender – Male -0.4506 0.0115 <0.0001 0.6373 0.6231 0.6518 
Age 0.0119 0.0004 <0.0001 1.0120 1.0113 1.0127 
Drug/Alcohol Use – Yes -0.1010 0.0165 <0.0001 0.9039 0.8752 0.9336 
Vehicle – Truck 0.0692 0.0127 <0.0001 1.0716 1.0454 1.0986 
Vehicle – Van 0.0585 0.0273 0.0320 1.0602 1.0050 1.0986 
Land Use – Urban -0.0481 0.0128 0.0002 0.9530 0.9294 0.9772 
Road – Local -0.1819 0.0156 <0.0001 0.8337 0.8087 0.8596 
Road – Interstate -0.3631 0.0168 <0.0001 0.6955 0.6721 0.7188 
Road Surface – Loose -0.4175 0.0916 <0.0001 0.6587 0.5505 0.7882 
Road Surface – Water -0.2329 0.0219 <0.0001 0.7923 0.7590 0.8270 
Shoulder – Paved -0.0536 0.0196 0.0062 0.9478 0.9121 0.9849 
Shoulder – Unpaved 0.0655 0.0176 0.0002 1.0677 1.0315 1.1051 
Light Conditions – Dark w/ Lights -0.1988 0.0149 <0.0001 0.8198 0.7961 0.8441 
Light Conditions – Dark -0.0791 0.0156 <0.0001 0.9240 0.8961 0.9527 
Light Conditions – Dawn/Dusk -0.0761 0.0266 0.0043 0.9267 0.8796 0.9764 
Weather – Cloudy 0.1246 0.0164 <0.0001 1.1326 1.0969 1.1695 
Weather – Low Visibility 0.1445 0.0548 0.0084 1.1555 1.0378 1.2865 
Seatbelt – Yes -1.2963 0.0226 <0.0001 0.2735 0.2617 0.2859 
Airbag – Not Deployed -1.1149 0.0122 <0.0001 0.3279 0.3202 0.3359 
Ejected – Partially 2.5154 0.1134 <0.0001 12.3720 9.9054 15.4525 
Ejected – Yes 1.8757 0.0538 <0.0001 6.5254 5.8723 7.2512 
Crash Type – Barrier -0.6619 0.0191 <0.0001 0.5159 0.4969 0.5355 
Crash Type – Ditch -0.1412 0.0223 <0.0001 0.8683 0.8312 0.9070 
Crash Type – Fence -0.5793 0.0307 <0.0001 0.5603 0.5276 0.5950 
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Crash Type – No Fixed Object -0.4855 0.0561 <0.0001 0.6154 0.5514 0.6869 
Crash Type – Other -0.5622 0.0278 <0.0001 0.5700 0.5397 0.6019 
Crash Type – Parked Car -0.9448 0.2771 0.0006 0.3888 0.2258 0.6692 
Crash Type – Pole -0.4089 0.0216 <0.0001 0.6644 0.6369 0.6931 
Crash Type – Rollover 0.4120 0.0212 <0.0001 1.5099 1.4483 1.5740 
Crash Type – Sign -0.8497 0.0262 <0.0001 0.4276 0.4061 0.4501 
Crash Type – Structure -0.9076 0.0361 <0.0001 0.4035 0.3759 0.4331 
Crash Type – Water -0.4574 0.0479 <0.0001 0.6329 0.5762 0.6952 



Study Limitations 

 

Comparison to Other Literature on Tree Crashes 

  

The relatively higher tree crash frequency in rural areas compared to urban areas in the 

present study is consistent with existing literature on tree crashes (although the difference 

was very small in our study). Wolf and Bratton (2006) found that tree crashes were more 

frequent and more severe in rural areas when compared to urban areas. The authors 

argued that higher speeds in rural areas contributed to this difference. Dumbaugh (2005) 

suggests that fixed objects in an urban roadside promote safety by reducing speed and 

enhancing driver caution. Dumbaugh (2005) compared two similar urban roadways and 

found that the roadway with larger lane widths and clear zones had more crashes 

narrower lanes and clear zones. In other words, if a more “forgiving” roadway with larger 

clear zones and lane widths induces drivers to increase speed, this explains why rural 

areas with the attributes above have more severe and more frequent tree crashes 

compared to urban areas. Also, Harvey and Aultman-Hall (2015) found that smaller, 

more enclosed streetscapes were characterized by less severe crashes and suggested that a 

more constrained streetscape makes drivers more aware of potential hazards and causes 

them to engage in less risky driving behavior. Harvey and Aultman-Hall (2015) argue 

that in-fill development and roadside trees may create smaller, more enclosed streetscape 

along urban arterials, which may improve traffic safety by encouraging safer driver 

behavior.  
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Naderi (2003) found that inclusion of features such as trees and concrete planters along 

the roadside resulted in statistically significant reductions in the number of mid-block 

crashes along the sampled roadways, with the number of crashes decreasing between five 

to 20 percent. Lee and Mannering (1999) also found that in urban areas, the presence of 

trees was associated with a decrease in the probability that a run-off-roadway crash 

would occur in urban areas and the opposite effect was found in rural areas. Park and 

Abdel-Aty (2015) found that safety measures such as wide shoulders and reduced speed 

limits had less effect on promoting safety as driveway density and pole density increased. 

It appears there is a body of research suggesting that a defined roadside boundary, as 

enhanced by roadside trees and other fixed objects, has a traffic-calming effect that 

enhances safety in some circumstances.  

 

The present study found that rural tree crashes were more frequent and more severe as 

compared to urban tree crashes, which may support the assertions of Dumbaugh (2005) 

and Harvey and Aultman-Hall (2015). The present study also found that tree crashes are 

most frequent at nighttime with lighting and least frequent at nighttime without lighting. 

Low visibility is similar to fixed objects in that they are both obvious hazards, which may 

induce drivers to reduce speed, thus lowering accident severity and frequency. Of course, 

the unique characteristics of the roadway and surrounding land use will impact driver 

perception of hazards. Ultimately, urban driving patterns differ from rural driving 

patterns, and this impacts both the frequency and severity of tree- and other run-off-road 

collisions.  
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Holdridge et al. (2005), modeled injury severity in fixed object crashes and found that 

trees, utility poles and the leading ends of guardrails and bridge rails increase the 

probability of fatal injuries in run-off-road crashes. Other variables that contributed to 

fixed-object crash severity include speed, intoxication, and falling asleep at the 

wheel/inattention. By contrast, the present study did not find a significant impact of 

intoxication on tree crash frequency.  

 

 Implications for Planning 

In looking at all traffic accidents (i.e., not just single-vehicle), tree-related crashes 

accounted for 1.5% of all crash events recorded (n=3,033,048) during the eight-year 

study period. While somewhat disproportionate given crash frequency, tree-related traffic 

crash fatalities accounted for just 3.5% of the total road fatalities recorded from 2006-

2013 (FDOT Office of Planning, 2017). On average, 94 people died each year in tree 

related car crashes. During the same time frame, there was an average of 15,464,241 

licensed Florida drivers (FDOT Office of Planning, 2017). Ignoring unlicensed or visiting 

motorists, this equates to an average annual risk of harm (based on fatalities) of 

1:164,513 for tree-related, single vehicle crashes. This calculated risk of harm assumes 

the driver is the only occupant. By comparison, the annual risk of harm for car occupants 

in general in the United States is 1:50,822 (National Safety Council, 2017). The annual 

risk of harm for falling down steps in the United States is similar, but still more likely at 

1:139,544 (National Safety Council, 2017). Interestingly, the annual risk of harm 

associated with working in the finance and insurance industry in the United States is 
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double (1:82,350) the risk of harm posed by Florida’s roadside trees (National Safety 

Council, 2017).  

 

While risk assessment if the United States is largely qualitative (Smiley et al., 2011), 

arborists and urban foresters in the United Kingdom assess and manage tree risk by 

estimating risk of harm (Ellison, 2005). Drawing on the Tolerability of Risk (ToR) 

framework (Health and Safety Executive, 2001), the Quantitative Tree Risk Assessment 

method defines situations with an annual risk of harm 1:1,000,000 or less as being 

broadly acceptable (Ellison, 2017). Situations, such as tree-related car crashes in Florida 

where the calculated annual risk of harm falls between 1:10,000 and 1:1,000,000, are 

deemed tolerable to the public if the risk has been mitigated to be as low as reasonably 

possible (ALARP) given the costs and benefits of risk reductions efforts (Ellison, 2017). 

Future research to quantify the costs of current roadside clear zones and relative changes 

in safety and management costs (and loss of tree benefits) for more or less aggressive 

management scenarios could help determine if risks are currently ALARP.  

 

While potential risks such as second-hand smoke inhalation offer no benefit to those 

subjected to it, roadside trees differ in that they can do both harm and good. In fact, 

excessive tree removal has its risks. In a study on the effects of drastic urban tree removal 

following infestations of the highly destructive emerald ash borer, researchers found that 

areas that lost tree canopy over a 17-year period experienced an additional 6,113 deaths 

related to respiratory illness and an additional 15,080 deaths linked to cardiovascular-

related deaths (Donovan et al., 2013).  Even the act of removing trees itself increases the 
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likelihood of death, as forestry is consistently ranked one of the most dangerous 

occupations (National Safety Council, 2017). As such, roadside tree removal or retention 

decisions are a balance of risk versus benefit. Removal efforts should focus on high risk 

and low-value trees, leaving trees with lower risks and higher benefits. Ultimately, risk is 

situation-specific, and the character of the road and land use must be considered in 

evaluating trees as crash hazards. 
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