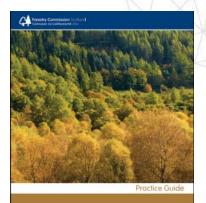
SPECIES CHOICE FOR TIMBER AND BIOMASS

Elspeth Macdonald

Scottish School of Forestry Inverness College UHI


With thanks to colleagues in Forest Research and Edinburgh Napier University



Species choice in the 21st Century

Ongoing initiatives aim to increase species diversity

Achieving diversity in Scotland's forest landscapes

- Factors driving species diversification:
 - Predicted climate change impacts on future species suitability
 - Increasing incidence of damaging pests and diseases many affecting commercial timber species

Climate change predictions

- Drier, warmer summers \rightarrow increased drought risk
- Wetter winters
- Increased frequency of extreme weather events

(Images: Forestry Commission)

Research Note

Sentember 2009

Potential impacts of drought and disease on forestry in Scotland

Sarah Green and Duncan Ray

In predictors of future changes in climate, drought is expected to become a more important factor affecting the health of tress in avec of stirling, particularly in the east of the county and inclusing areas of Schotand. Drought have, Cause direct physiological damage to tress as well as increase their susceptibility to a range of fungal diseases. Although a number of diseases are innown to be more agreesive on tress aperiencing drought stress, there are uncertainties as to which are likely to charge in the county of the stress of the str

FCRN004 1 CA Forest Research

Pests and diseases

P. ramorum in larch

The influence of climate change on forest insect pests in Britain

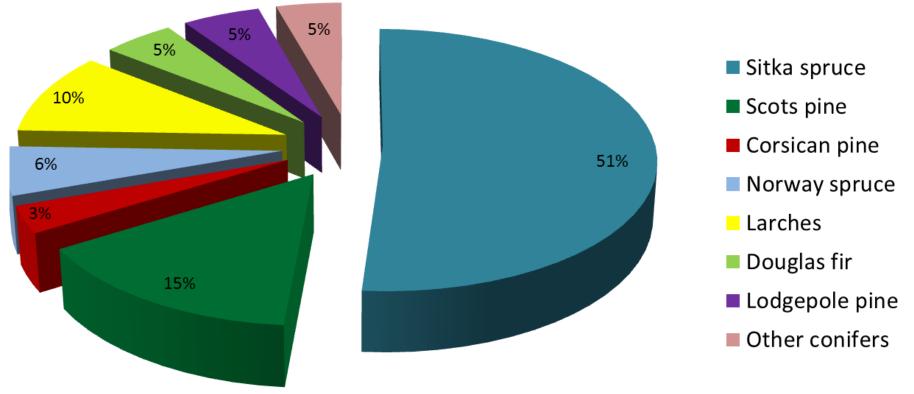
David Wainhouse and Daegan J.G. Inward

Predicting butan rules of damage by interce pedia an important appex of forest management. Climate change has the patiential to alleff centre plots and their impact on trees through higher temperatures, allened precidiation patterns, and more frequent oriteme awardner works. Wirmose temperatures are likely to have compile effect on interch, influencing, among other things, devolution transmissional iming of files, or police events, while a devolution patterns, and more there and natural ensembler. It is not possible to predict the future impact of teers possible to additional their host trees and natural ensembles. It is not possible to predict the future impact of teers possible to the addition of the endoged caracteristics of different intext types. The damage caused by aphilis and violated insects is likely to increase a the climate awarms. Higher temperatures will increase their prophedive rules and dought stress of not trues may increase their isoscetability to aphili attach. The damage trees of host trees and changes in biotes to trees may increase their isoscetability to aphilia track. The advance trees of host trees and for some appears a shorter generation the lifetop is the oblightone, drought predict, the advance of some appears a shorter generation the lifetop to part in the management difficult to predict, but the advance of the endogeneous the lifetop to part in the management memory the some and changement index in their institution. Lifetoms is not exceeded the memory the memoritories neurona and changement index in their institution. There are abarred are advanced to the memory the memoritories neurona and changement index and there institution. There are abarred are advanced to a memory the memoritories neurona and changement index and there institution. There are abarred are advanced to a stress advanced and advance in the memory the memoritories neurona and changement index advances in the tree memory the memoritories neuron and changement index advances in the tree memory t

March 2016

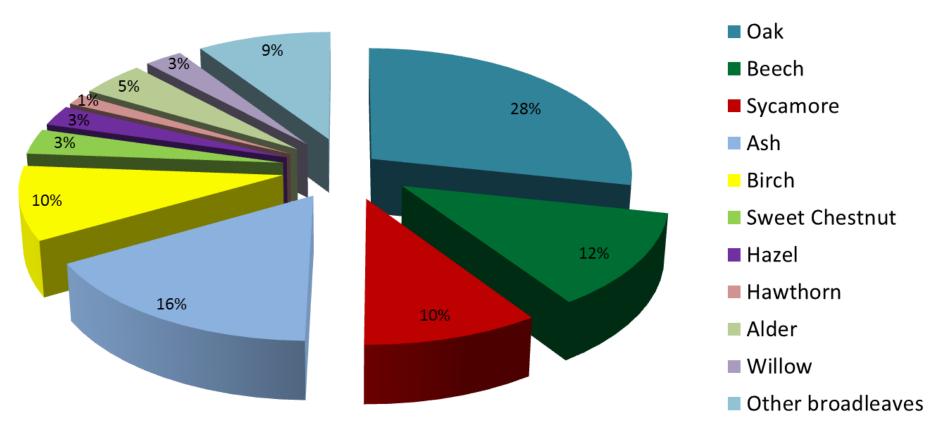
Dothistroma needle blight in pine

Chalara dieback in ash



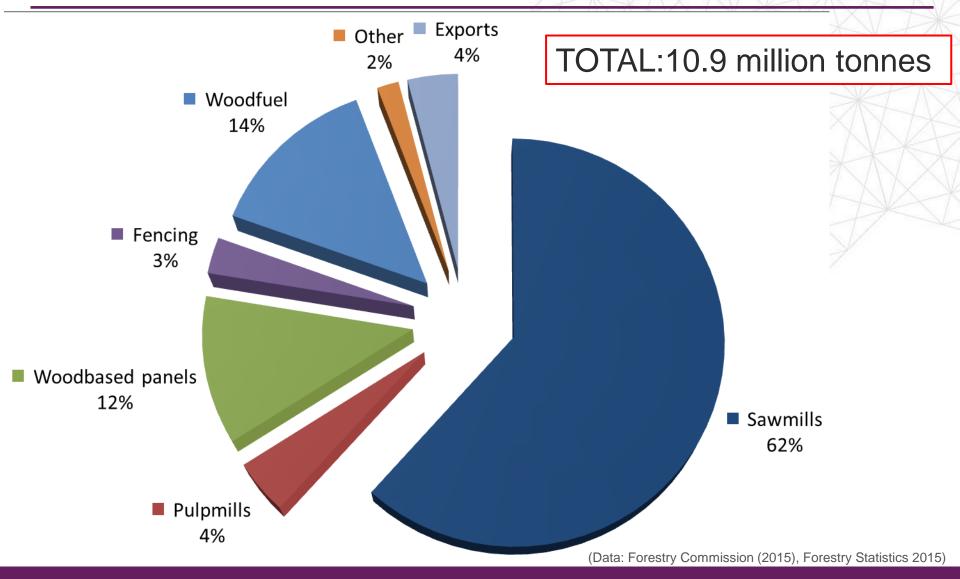
Oriental chestnut gall wasp

Current conifer species

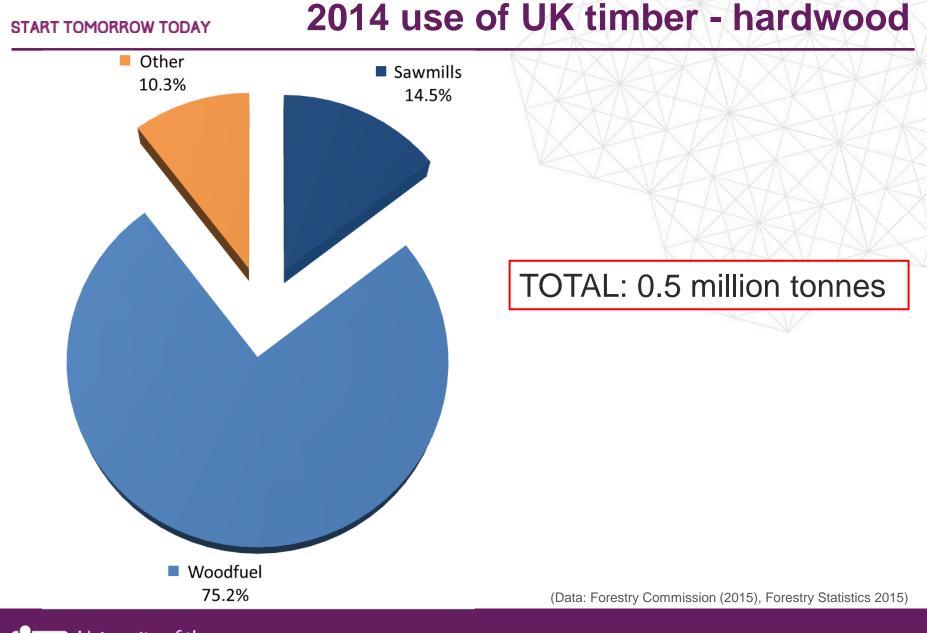

Conifer species: standing volume

(Data: Forestry Commission (2014), 50 year forecast of softwood availability)

Broadleaved species: standing volume



(Data: Forestry Commission (2014), 50 year forecast of hardwood availability)



2014 use of UK timber - softwood

START TOMORROW TODAY Timber and biomass – key properties

- Value of timber affected by:
 - Growth rate (productivity) and survival
 - ➤ External features (straightness, fluting, branching and taper) → affect harvesting, transport and processing
 - > Wood properties
 - Demand/availability

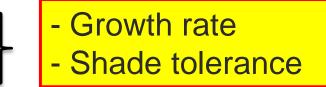
START TOMORROW TODAY Timber and biomass – key properties

- Value of timber affected by:
 - Growth rate (productivity) and survival
 - ➤ External features (straightness, fluting, branching and taper) → affect harvesting, transport and processing
 - Wood properties
 - Demand/availability

(Images: Forestry Commission)

Key properties for some end uses

	Biomass/ woodfuel	Woodbased panels	Structural sawn timber	Fencing/ outdoor	Pallets	Joinery
Wood density	\checkmark	✓	✓			
Stiffness			✓			
Strength			✓		✓	
Durability				✓		
Treatability			(✓)	✓	(✓)	
Dimensional stability			✓			✓
Moisture content	✓	✓				
Knottiness			✓		\checkmark	\checkmark
Appearance/ colour			(✓)			✓



Key properties for some end uses

	Biomass/ woodfuel	Woodbased panels		Structural awn timber	r	Fencing/ outdoor	Pallets		Joinery
Wood density	\checkmark	\checkmark		✓		Strength g	rade		
Stiffness	$\square \uparrow \square$			✓	7	determinin			
Strength	Determine			~		properties			
Durability	net calorific					✓			
Treatability	value per m	1 <mark>3</mark>		(✓)		✓	(√)		
Dimensional stability				✓					✓
Moisture content		✓							
Knottiness				\checkmark			\checkmark		\checkmark
Appearance/ colour				(√)					✓

- Management objectives
- Access to potential markets
- Silvicultural approach:
 - Single species or mixtures
 - Clearfelling or continuous cover

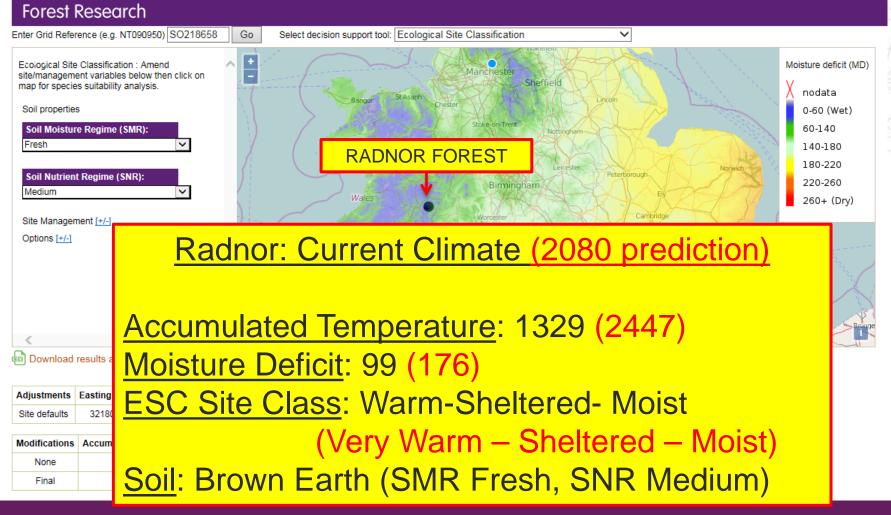


- Site assessment soils, climate, topography
- What has grown well on the site before? Or locally?
- Use Ecological Site Classification (ESC) to guide species choice and future climate suitability

Using ESC to guide species choice

Radnor forest, Wales

🔤 Download results as a CSV file | 📆 Download results as a PDF file


Adjustments	Eastings(m)	Northings(m)	Site Grid Reference	Climate Scenario	Site Class	Filter	Brash	Drainage	Fertiliser
Site defaults	321800	265800	SO218658	Baseline climate 1961-1990	Warm - Sheltered - Moist	All species	No brash present	No drainage installed	No fertiliser

Modifications	Accumulated Temperature(AT)	Continentality(CT)	Exposure(DAMS)	Moisture Deficit (MD)	Soil Moisture Regime (SMR)	Soil Nutrient Regime(SNR)
None	1329	9	11	99	5(Fresh)	3(Medium)
Final	1329	9	11	99	5(Fresh)	3(Medium)

Using ESC to guide species choice

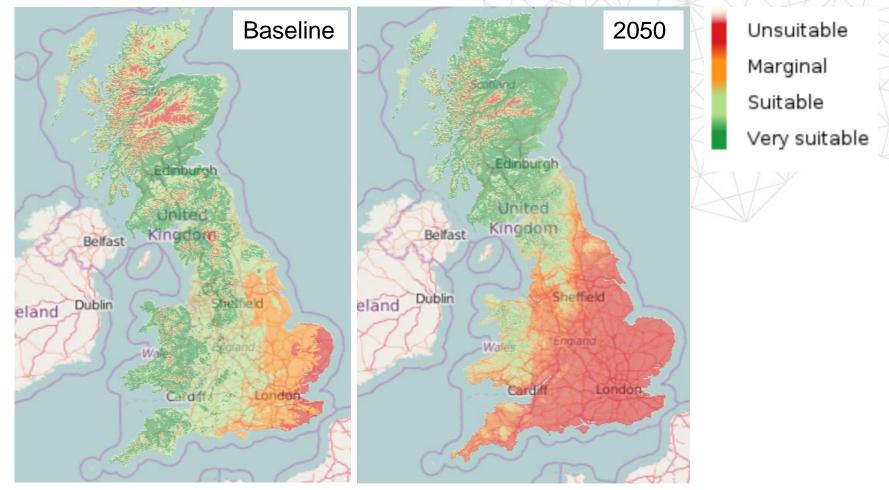
Radnor forest, Wales

Using ESC to guide species choice

Radnor ESC species suitability

Suitability key	Very Suitab	le (0.75-1.00)			Suitab	le (0.50)-0.74)			Margi	nal (0.3	0-0.49)	Uns	suitable (0.0-0).29)				
Common name	Species Code	Suitabi	ility	YC	Lim	АТ	ст	DAMS	MD	SMR	SNR	Suit.	AT	ст	DAMS	MD	SMR	SNR	T,
	species code	Ecological	Timber		2	~		DAIIS		Sint	Jun	Juit			DAMIS			5111	
Corsican pine	CP	0.76	0.75	15	AT5	0.76	1	1	0.99	1	1		•	•	•	•	•		
Lodgepole pine	LP	0.92	0.92	13	MD	1	1	1	0.92	1	1	٠	•	٠	•	•	•		
Macedonian pine	MCP	0.89	0.89	12	MD	1	1	1	0.89	1	1			٠	•		•		N N
Maritime pine	MAP	0.63	0.43	6	AT5	0.63	0.79	1	0.68	0.96	1			٠	•	٠	•		
Monterey/Radiata pine	RAP	0.39	0.16	3	AT5	0.39	0.79	1	0.4	1	1			•	•		•	٠	
Scots pine	SP	1	1	14	AT5	1	1	1	1	1	1	•	•	•	•	•	•	•	
Weymouth pine	WEP	0.95	0.95	13	AT5	0.95	1	1	1	1	1	•	•	•	•	•	•	٠	
Norway spruce	NS	1	1	24	AT5	1	1	1	1	1	1	•	•	•	•	•	•		
Oriental spruce	ORS	0.8	0.66	14	AT5	0.8	1	0.95	0.82	1	1	•	•	•	•	•	•	•	
Serbian spruce	OMS	0.8	0.8	18	MD	1	1	0.9	0.8	0.97	0.88	•	•	•	•	•	•		
Sitka spruce	SS	0.99	0.98	27	AT5	0.99	0.99	1	1	0.99	1	•	•	•	•	•	•	•	
Sitka spruce(VP)	VPSS	0.99	0.98	30	AT5	0.99	0.99	1	1	0.99	1	•	•	•	•	•	•	٠	
Douglas fir	DF	0.93	0.91	24	MD	0.98	1	0.94	0.93	1	1	•	•	•	•	•	•	٠	
Hybrid larch	HL	1	1	16	AT5	1	1	1	1	1	1	•	•	•	•	•	•	٠	

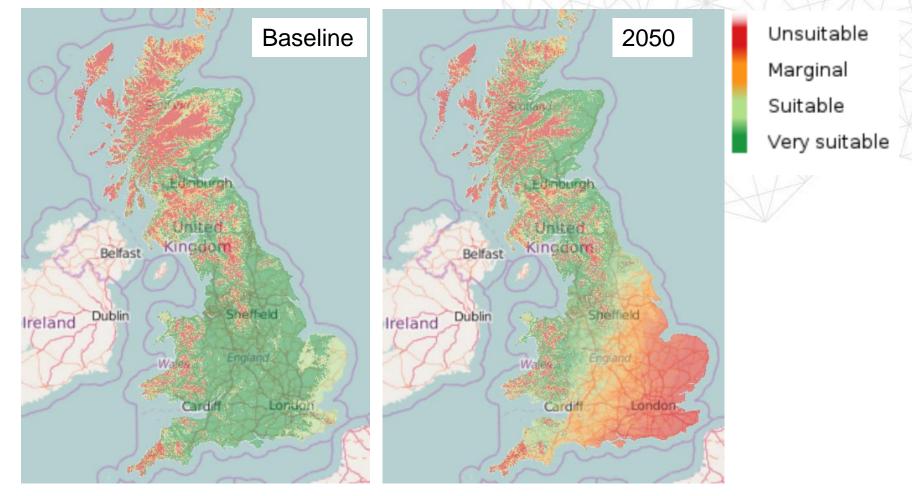
Using ESC to guide species choice


Radnor ESC species suitability

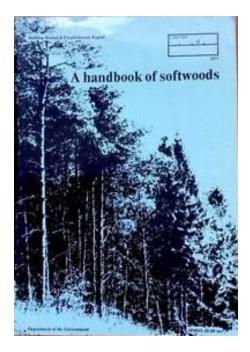
Suitability key	y •	Very Suitat	ole (0.75-1.00)	•	Suitat	ole (0.50	0-0.74)		Margi	nal (0.3	0-0.49)	•	Unsi	uitable (0.0-0	1.29)			
Commo	n name	Species Code	Suitab Ecological		YC	Lim	AT	ст	DAMS	MD	SMR	SNR	Suit.	AT		ст	DAMS	MD	SMR	SNR
Corsican pi	Cu	rrent	spe	cie	S		Number of species									•				
Lodgepole Suitability Macedonia						Сс	ni	fe	ſS			Broadleaves				•				
Maritime pir	Vei	ry suit	table)					25	5 (21)				1	8 (18	3)		•
Monterey/R	Sui	itable							2	2 (6)					1	0 (12	2)		•
Scots pine Weymouth	Ma	rgina					1 (0)						1 (0)					•		
Norway spr	Un	suitat	ole				(1)						1 (0)					•		
Oriental spru	uce	ORS	0.8	0.66	14	AT5	0.8	1	0.95	0.82	1	1	•	•		•	•	•	•	•
Sit Dc Hy	 On more challenging sites – limited number of suitable species 																			

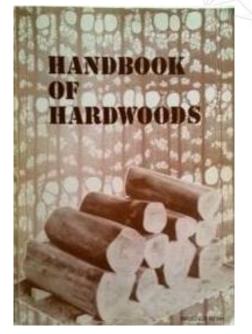
University of the Highlands and Islands Inverness College

Using ESC to guide species choice


Changing climate suitability – Sitka spruce

Using ESC to guide species choice


Changing climatic suitability – sessile oak



Timber information for species choice

• Early research on UK timber: BRE

	strength nber	properties
Gwandolin	e M Lavers	

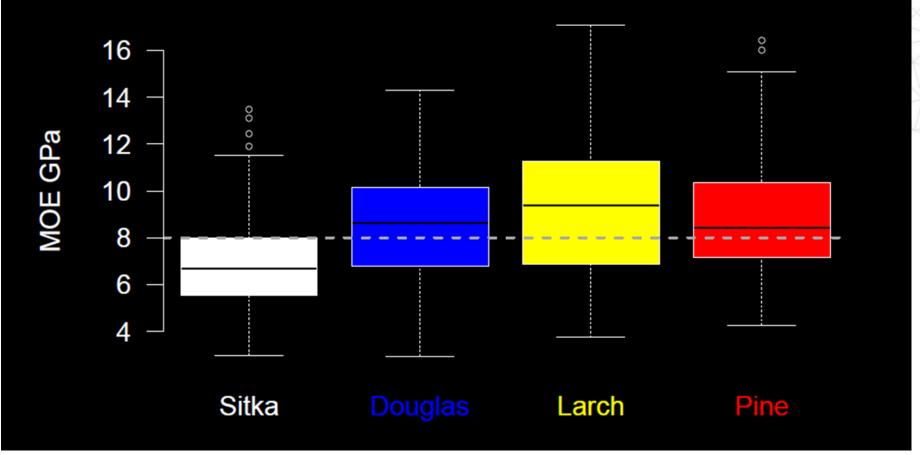
- Early research on UK timber: BRE
- More recent research has focused on 4 softwood species (~80% of standing volume):
 - Sitka spruce
 - Scots pine
 - ➤ Larch
 - Douglas fir

Collaborative projects with industry support, many through SIRT network (Forest Research, Edinburgh Napier, Glasgow, Aberdeen and Bath Universities)

- Research has aimed to
 - Link timber properties and performance to site conditions and silviculture
 - Investigate variation in properties

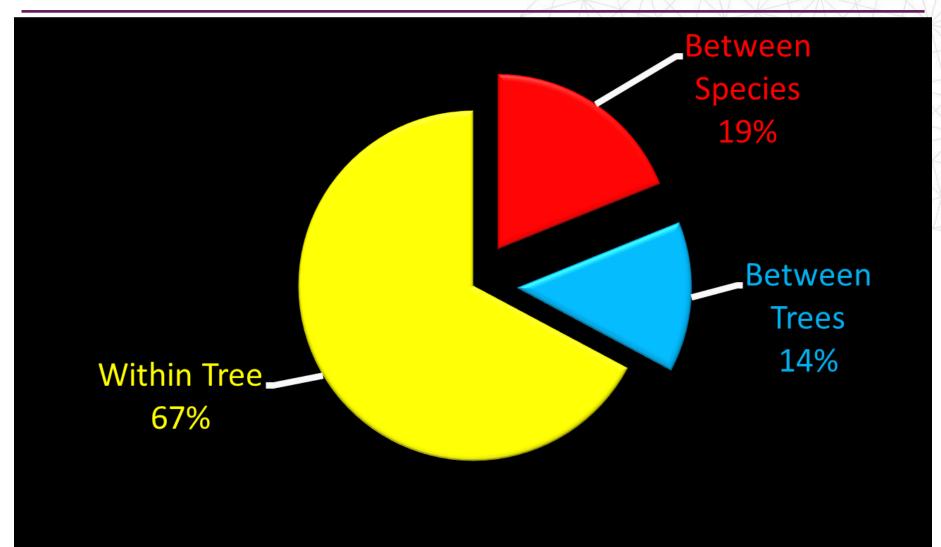
Timber data: commercial softwoods

Average values (from UK data)	Sitka spruce	Scots pine	Larches (JL/HL/EL)	Douglas fir
Wood density (kg m ⁻³)	387	418	494	455
Bending stiffness (MOE) (kN mm ⁻²)	8.3	9.3	9.6	9.2
Bending strength (MOR) (N mm ²)	32.7	44.5	39.1	34.1
Basic strength class	C16	C18 – C20	C22	C18 – C20
Durability (1 = Very durable \rightarrow 5 = Not durable)	4 - 5	3 - 4	3 - 4	4
Net calorific value (kWh green tonne ⁻¹)	1705	2233	2653	2596


Timber data: commercial softwoods

Average values (from UK data)	Sitka spruce	Scots pine	Larches (JL/HL/EL)	Douglas fir
Wood density (kg m ⁻³)	387	418	494	455
Bending stiffness (MOE) (kN mm ⁻²)	8.3	9.3	9.6	9.2
Bending strength (MOR) (N mm ²)	32.7	44.5	39.1	34.1
Basic strength class	C16	C18 – C20	C22	C18 – C20
Durability (1 = Very durable \rightarrow 5 = Not durable)		mass prod d, as well a		
Net calorific value (kWh green tonne ⁻¹)	1705	2233	2653	2596

Variation between species


Wood stiffness variation – UK commercial species

(Data: Forest Research)

Sources of wood stiffness variation

(Data: Forest Research)

- David Gil-Moreno, PhD student (Edinburgh Napier University and Forest Research) is investigating wood properties of 4 species:
 - Norway spruce
 - Western hemlock
 - Western red cedar
 - Noble fir

Samples from 3 sites for each species (England, Wales and Scotland)

 Project is funded the Scottish Forestry Trust, FC Scotland and Natural Resources Wales

Timber information

Average values	Sitka spruce	Norway spruce	Western hemlock	Western red cedar	Noble fir
Wood density (kg m ⁻³)	387	378	444	358	365
Bending stiffness (MOE) (kN mm ⁻²)	8.3	8.55	8.33	7.71	7.44
Bending strength (MOR) (N mm ²)	32.7	31.4	34.5	31.1	30.1
Basic strength class	C16	C18	C18	C14	C14
Durability (1 = Very durable \rightarrow 5 = Not durable)	4 - 5	4	4	2	5
Calorific value (kWh green tonne ⁻¹)	1705	1787	2040	1755	

Timber information

Average values	Sitka spruce	Norway spruce	Western hemlock	Western red cedar	Noble fir
Wood density (kg m ⁻³)	387	378	444	358	365
Bending stiffness (MOE) (kN mm ⁻²)	8.3	8.55	8.33	7.71	7.44
Bending strength (MOR) (N mm ²)	32.7	31.4	34.5	31.1	30.1
Basic strength class	C16	C18	C18	C14	C14
Durability					
$(1 = \text{Very durable} \rightarrow 5 = \text{Not durable})$	4 - 5	4	4		ed C16 > 90%
Calorific value (kWh green tonne ⁻¹)	1705	1787	2040	1755	2 30 70

Timber information

Average values	Sitka spruce	Norway spruce	Western hemlock	Western red cedar	Noble fir
Wood density (kg m ⁻³)	387	378	444	358	365
Bending stiffness (MOE) (kN mm ⁻²)	8.3	8.55	8.33	7.71	7.44
Bending strength (MOR) (N mm ²)	32.7	31.4	34.5	31.1	30.1
Basic strength class	C16	Natural du	rability	C14	C14
Durability (1 = Very durable \rightarrow 5 = Not durable)	4 - 5	offers pot for exte	ential	2	5
Calorific value (kWh green tonne ⁻¹)	1705	applicat	ions	1755	

- Edinburgh Napier University and Forest Research are also testing samples of:
 - European silver fir
 - Grand fir
 - Pacific silver fir
 - Nordmann (Caucasian) fir
 - Serbian spruce
 - Japanese cedar

Research considerations

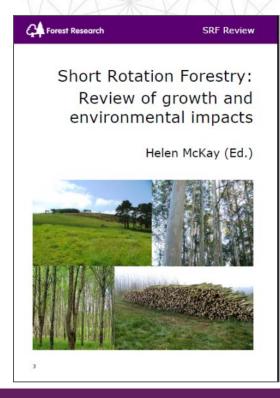
- Limited number of suitable sample stands
- Logistics of extracting sample logs
- Processing, drying and testing all take time....and money....

- There are a number of other conifer species potentially of interest for productive stands:
 - Macedonian pine
 - Maritime pine
 - Radiata pine
 - Weymouth pine
 - > Oriental spruce
 - Coast redwood
 - Leyland cypress
 - > Wellingtonia

- Limited UK experience of processing minor species....and understandable uncertainty about prospect of increasing supply
- Edinburgh Napier University is planning a survey of sawmillers' experience to build up a database of knowledge – watch this space...
- Work in the Wood Product Innovation Gateway project (WoodPIG) included tests of some minor species in the production of cross-laminated timber

(Image: Edinburgh Napier University)

- Small volumes harvested, but locally important
- Woodfuel is a key market opportunity to improve timber quality of stands
- Future Trees Trust: working to improve broadleaved trees
- Initiatives through Grown in Britain to increase hardwood timber utilisation (e.g. WoodStock)
- Testing of sycamore and birch underway by FR/Edinburgh Napier


Growing for biomass

 Marginal upland sites – recent work on the potential for mixtures of downy birch and aspen as a woodfuel crop (Scott Wilson)

- Marginal upland sites recent work on the potential for mixtures of downy birch and aspen as a woodfuel crop (Scott Wilson)
- More fertile sites (lower grade agricultural land) - Short Rotation Forestry for biomass production

University of the Highlands and Islands Inverness College

- Marginal upland sites recent work on the potential for mixtures of downy birch and aspen as a woodfuel crop (Scott Wilson)
- More fertile sites (lower grade agricultural land) - Short Rotation Forestry for biomass production
- Ongoing trials on six sites in Scotland to evaluate biomass potential of several species

Species	Height ranked across sites	Mean % survival ranked across sites
Hybrid aspen	1	4
Red alder	2	9
Hybrid larch	3	3
Common alder	4	7
Silver birch	5	5
Italian Alder	6	9
Sitka spruce	7	6
Ash	8	2
Sycamore	9	1
Sweet chestnut	10	8

(Data: Stokes (2015) Short Rotation Forestry Trials Report)

START TOMORROW TODAY Species choice: a recent (ish) example

- Lodgepole pine (*Pinus contorta*): native to western North America
- Timber used in construction and joinery

University of the Highlands and Islands

nverness College

Lodgepole pine in the UK

Widely planted in uplands during 1960s-1980s

South coastal (Longbeach) – poor form and stability, fast growing

Lodgepole pine: pests & diseases

University of the Highlands and Islands Inverness College

Lodgepole pine: timber properties

- Problems reported by end users brittle failure of fence posts and pallets in service
- Study tested timber from 3 provenances:
 - Alaskan similar properties to Scots pine
 - Inland variable properties
 - South coastal low impact strength and prone to brash failure
 - Planted for timber now harvested mainly for chipwood and biomass (but still planted as a nurse species)

Utilisation of Lodgepole Pine

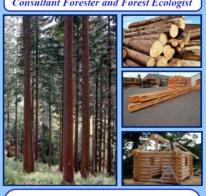
University of the Highlands and Islands verness College

INVERNESS.UHI.AC.UK

Commission

START TOMORROW TODAY Lodgepole pine: what might we learn?

- Fast growth does not necessarily deliver a good financial return
- Provenance (seed origin) can be really important
- Introduced species may be susceptible to damage by indigenous pests which do not affect native species (e.g. Pine Beauty Moth)
- The value of long-term research trials
- The need for tree improvement through selection and breeding



- Diversifying species choice for timber and biomass:
 - Will it grow and survive? (current and future site and climate suitability; potential pest and disease threats)
 - Is it suited to the planned silvicultural system?
 - > Is guidance on provenance available? If so, follow it.
- Since there is a large overlap in many timber properties between (softwood) species – what you grow is only part of the story....how you grow it (silviculture) and what you do with it (processing) may be just as important

- Forestry Commission, Natural Resources Wales and Forest Research web pages and publications
- Silvifuture website <u>www.silvifuture.org.uk/</u>
- Using alternative conifer species for productive forestry in Scotland
 Dr. Scott McG. Wilson MICF or Consultant Forest and Forest Ecologist

Using alternative conifer species for productive forestry in Scotland

- Thanks for guidance and the use of data and illustrations to:
 - > Dave Auty
 - Tom Drewett
 - Barry Gardiner
 - David Gil-Moreno
 - Paul McLean
 - James Ramsay
 - Dan Ridley-Ellis

Forest Research Edinburgh Napier

Strategic Integrated Research in Timber

INVERNESS.UHI.AC.UK

Acknowledgements