Natural Capital Accounting of the Air Quality Regulating Service of Trees in the UK

Laurence Jones¹, Bill Bealey¹, Eiko Nemitz¹, Stefan Reis¹, Dan Morton¹, Gina Mills¹, Felicity Hayes¹, Massimo Vieno¹, Ed Carnell¹, Jane Hall¹, Rachel Beck¹, Ian Dickie², Philip Cryle², Mike Holland³

¹ Centre for Ecology & Hydrology, NERC
 ² Economics for the Environment Consultancy (Eftec)
 ³ Ecometrics Research and Consulting (EMRC)

Air pollution and human health

5.5 million deaths globally 40,000 deaths, UK

Which pollutants

PM10

PM2.5

NO2

NH3

03

SO2

Trees remove air pollution

London's trees remove 2.2 kt pollutants (i-tree Eco)

Trees reduce pollutant concentrations by 1 – 10% (Nowak et al. 2013)

Rome (Manes *et al.*, 2012)

- Ozone ~\$3 million/yr for human health benefits (risk of mortality due to ozone)
- PM₁₀ \$36 million/yr

Case study small area (10 km x 10 km) in London (Tiwary et al., 2009)

 PM10 2 less deaths and 2 less hospital emissions per year.

Nyhan M. 2015, SENSEable City Lab, MIT

Pollution removal by vegetation

Aerodynamic resistance
Boundary resistance
Canopy resistance
To surface
To stomata

Most similar approaches ...

- Apply a single deposition velocity
 - Adjust for meteorology (dry days per year)
 - Adjust for seasonality (in leaf/off leaf)

Don't consider:

- Pollutant interactions
- Dynamic meteorology
- Transport

Spatial context

Atmospheric transport Location of beneficiaries

The EMEP4UK atmospheric chemistry transport model

5x5km (~2x2km)
Hourly timestep
Dynamic interactions
Transport

2015, emissions PM2.5 mg/m2

Land cover scenarios

Change all vegetated land cover to 'neutral'

Base map, 2015 High: 1200

No vegetation scenario

Difference map

Quantity of PM2.5 removed (mg/m2)

Table of deposition velocities (mm/s)

				Reference			
	Coniferous	Deciduous	Heather & grass	(No vegetation)	Crops	Water	
PM ₁₀	7.88	5.31	2.54	2.34	2.35	2.37	
$PM_{2.5}$	5.94	3.71	0.91	0.57	0.66	0.58	
SO ₂	17.77	17.68	7.55	1.17	5.45	6.75	
NH_3	12.81	12.52	6.32	1.25	3.33	6.6	
NO_2	1	0.77	0.53	0.05	0.54	0.05	
O_3	4.32	3.83	2.67	0.5	3.51	0.5	

Quantities of pollutant removed (kt/yr)

Habitat	Coniferous woodland	Deciduous woodland	Semi-natural (grassland, moorland)	Crops	Total vegetation	urba (ter / n / ice by rence)
Area CEH landcover (km²)	15,361	13,950	135,909	63,161	228,381		69,106
PM ₁₀	21.3	14	7.7	0	43		-3.9
PM _{2.5}	9.6	8.2	4.5	-0.1	22.2		-2.3
SO ₂	4	7.1	17.7	9.5	38.3		-1.2
NH ₃	4.7	8.4	26.5	7.8	47.4		-4.5
NO_2	1.6	2.6	10.4	9.1	23.7		-0.2
O ₃	121.6	95.5	597.1	383.9	1198.2		-26.7

Where is the PM2.5 being removed

Base map, 2015 Value High: 14.5 Low 2.0

No vegetation scenario

High: 14.5

Low 2.0

Value

Difference map

Change in exposure to PM2.5 (ug/m3)

Natural Capital Accounts

	Coniferous	Deciduous		
PM ₁₀	7.88	5.31		
PM _{2.5}	5.94	3.71		
SO ₂	17.77	17.68		
NH ₃	12.81	12.52		
NO ₂	1	0.77		
O ₃	4.32	3.83		

Next steps: Urban only scenario

- Health & economic analysis
- National scope
- Greater Manchester case study
- Finer resolution input data

Any questions

