

Developing a model for standardised pest and disease risk assessment of UK forests

Susan Davies University of Edinburgh

ICF National Conference: Tree health, resilience & sustainability, Cardiff April 22nd, 2015

NERC PURE Projects

- PURE (Probability, Uncertainty and Risk in the Environment)
- New Knowledge Exchange Network funded by NERC relating to natural hazards.
- Focus of today: output of a 6 month pilot project (NERC/PA 13-021): to develop a replicable methodology and associated model to assess the pest and disease risk to UK forests: using a case study of the UK's Woodland Carbon Code. Completed in May 2014
- Received 18 months further funding (starting today!)
- Project Partners: Edinburgh University, Forestry Commission, Forest Research, ForestRe.

Woodland Carbon Code

- The standard for woodland carbon projects in the UK. Launched 2011
- Aims include:
 - Increasing private investment in woodland creation
 - Ensuring woodland is managed to a high standard
 - Ensuring carbon sequestration is robustly audited and verified
- UK quoted companies can purchase carbon units against gross emissions voluntary reporting not for compliance obligations
- As of September 2014: 89 validated woodland projects, covering 3,200 HA, projected to sequester 1.5m tonnes of CO₂

Project Buffers

- Not all sequestered carbon sold as carbon credits
- Provisions to ensure permanence
- Each project sets aside a certain amount of credits into a pooled buffer against loss

• Must assess risk in each of the following categories

-	Legal/Social	1-2%
-	Project Management	1-3%
-	Finance	2-5%
-	Natural disturbance – Fire	2-4%
-	Natural disturbance – Weather	3-6%
-	Natural disturbance – Pest & Disease	3-10%
-	Direct climate change effects	3-10%
SUN	И: Range 15-40%	

• Key question: is 3-10% an adequate buffer against pest and disease losses for WCC projects which last for up to 100 years?

The problem

- Historical data/experience usually used to assess P&D risk (especially under carbon standard methodologies)
- HOWEVER P&D risk often new entrants and expansion of existing ranges etc
- Pest Risk Assessments focus on individual pests
- Existing approaches focus on management i.e. control, response
- Tend to estimate average/expected loss not worst-case/catastrophic

Approach taken

- Identify all tree species constituting over 2% of the current WCC portfolio
- Identify key P&D threats to each tree species expert interviews/literature review
- Identify key metrics for risk assessment and populate them for a sample
- Develop a scenario tool to determine the worst case loss factor function of year of arrival, rate of spread, replanting etc.
- Determined individual risk factors for each P&D for each tree species:
 - % likelihood of arrival and establishment/expansion x worst case loss factor
- Develop model to sum these risk factors for each individual tree species
- Apply to Woodland Carbon Code projects (weighted by species)

Model

>200 P&D identified..

Pest/Disease			
LATIN name	COMMON name(s)	Туре	Present in UK?
Acleris gloverana	Western black-headed budworm	Insect	Ν
Acleris variana	Black headed budworm, Eastern	Insect	Ν
Agrilus anxius	Bronze Birch Borer	Insect	Ν
Agrilus planipennis	Emerald Ash borer	Insect	Ν
Aleuroclava psidii		Insect	Ν
Anisogramma anomala	Blight of Hazel, Eastern filbert blig	Fungus	Ν
Anisogramma virgultorum		Fungus	Y
Anoplophora chinensis	Citrus longhorn beetle Black and	Insect	Ν
Anoplophora glabripennis	Asian Longhorn Beetle Starry Sky	Insect	Ν
Anthonomus quadrigibbus	Apple curculio	Insect	Ν
Apriona germarii	Mulberry longhorn beetle	Insect	Ν
Apriona japonica	Japanese mulberry longhorn bee	Insect	Ν
Arceuthobium americanum	Lodgepole pine dwarf mistletoe	Plant	Ν
Arceuthobium campylopodum	Western dwarf mistletoe	Plant	Ν
Arceuthobium douglasii	Douglas fir dwarf mistletoe	Plant	Ν
Arceuthobium laricis	Larch dwarf mistletoe	Plant	Ν
Arceuthobium occidentale	Digger pine dwarf mistletoe	Plant	Ν
Arceuthobium pusillum	Eastern dwarf mistletoe	Plant	Ν
Arceuthobium tsugense	Hemlock dwarf mistletoe	Plant	Ν
Armillaria mellea	Honey Fungus, Root Rot	Fungus	Y
Armillaria ostoyae	Dark honey Fungus, Root Rot	Fungus	Y
Arrhenodes minutus	Oak timberworm	Insect	Ν
Atropellis pinicola	Branch canker of pine, Trunk canl	Fungus	Ν
Atropellis piniphila	Branch/Trunk pine canker, Twig b	Fungus	Ν
Botryosphaeria laricina	Shoot blight of Larch, Twig die-ba	Fungus	Ν
Bupalus piniarius	Pine Looper Moth	Insect	Y
Bursaphelenchus xylophilus	Pine wood nematode, Pine wilt d	Nematode	N

CRITERIA FOR EACH PEST/DISEASE
Latin name
Common name
Type (e.g. Fungus, Insect etc)
% Likelihood of entry & establishment
Age affected
Range:
Current range in UK
Possible range in 100yrs if arrived today
Years to 100% (if<100)
% Mortality (by species)
% Loss Factor (by species)
% Risk Factor (by species)

Scenario tool

arbon Model	SAB						
'hin/No thin	<u>No thin</u>						
oss %	10.0%						
ears to 100	60						
/linimum age	N						
/laximum age	N						
ears to mortality	N						
		RESULTS:	ARRIVES	YEAR:			
arbon Lookup:	Replant (SAB):	RESULTS: YEAR	ARRIVES	YEAR: 5	10	15	20
arbon Lookup: .60	Replant (SAB): 2.60	RESULTS: YEAR 5	ARRIVES 0 2.58	YEAR: 5 2.60	10 2.60	15 2.60	20 2.60
Carbon Lookup: .60 1.77	Replant (SAB): 2.60 11.77	RESULTS: YEAR 5 10	ARRIVES 0 2.58 11.60	YEAR: 5 2.60 11.67	10 2.60 11.77	15 2.60 11.77	20 2.60 11.77
Carbon Lookup: .60 1.77 2.95	Replant (SAB): 2.60 11.77 42.95	RESULTS: YEAR 5 10 15	ARRIVES 0 2.58 11.60 42.00	YEAR: 5 2.60 11.67 42.26	10 2.60 11.77 42.59	15 2.60 11.77 42.95	20 2.60 11.77 42.95
Carbon Lookup: .60 1.77 2.95 33.27	Replant (SAB): 2.60 11.77 42.95 133.27	RESULTS: YEAR 5 10 15 20	ARRIVES 0 2.58 11.60 42.00 129.31	YEAR: 5 2.60 11.67 42.26 130.06	10 2.60 11.77 42.59 131.07	15 2.60 11.77 42.95 132.16	20 2.60 11.77 42.95 133.2

2.60	2.60	5	2.58	2.60	2.60	2.60	2.60
11.77	11.77	10	11.60	11.67	11.77	11.77	11.77
42.95	42.95	15	42.00	42.26	42.59	42.95	42.95
133.27	133.27	20	129.31	130.06	131.07	132.16	133.2
241.22	241.22	25	232.76	233.66	235.31	237.22	239.2
319.31	319.31	30	306.94	307.59	309.14	311.45	314.0
376.07	376.07	35	360.39	360.86	361.99	364.01	366.7
421.63	421.63	40	402.91	403.29	404.15	405.65	408.0
460.48	460.48	45	438.85	439.17	439.88	441.05	442.8
504.95	504.95	50	479.62	479.99	480.68	481.75	483.3
526.61	526.61	55	499.29	499.47	500.02	500.90	502.1
541.25	541.25	60	512.47	512.59	512.89	513.56	514.5
553.64	553.64	65	528.13	523.62	523.84	524.25	525.0
559.82	559.82	70	538.28	533.69	529.18	529.46	529.9
566.91	566.91	75	549.23	544.66	540.07	535.56	535.9
574.12	574.12	80	560.08	555.72	551.15	546.56	542.0
579.86	579.86	85	568.92	565.25	560.88	556.32	551.7
585.51	585.51	90	576.83	574.01	570.34	565.97	561.4
604.30	604.30	95	595.96	593.74	590.92	587.25	582.8
606.14	606.14	100	599.52	597.62	595.40	592.58	588.9
		MAX LOSS:	570.867	5.82%			

Species level risk factor..

				Risk	Cumulative
BIRCH	BETULA			factor	remainder
Bronze Birch Borer	Agrilus anxius	BETULA		3.57%	96.43%
	Anisogramma virgultorum	BETULA		0.34%	96.10%
Citrus longhorn beetle (Black and	Anoplophora chinensis	BETULA		2.33%	93.86%
Asian Longhorn Beetle (Starry Sky	Anoplophora glabripennis	BETULA		2.91%	91.13%
Honey Fungus, Root Rot	Armillaria mellea		- Y	0.29%	90.87%

Sample outputs

- Using current WCC portfolio and a sample of P&D (just under 25%)
- NB: preliminary sample outputs <u>for illustration ONLY</u>.
- Worst case loss: Assumes high likelihood of arrival: 1 in 20yr to 1 in 100yr and <u>conceptually</u> ... 99% sure losses will not be worse than this..
- i.e. NOT a forecast

INITIAL RESULTS (23% P&D categorised)	2010		WCC species	Weighted risk
Latin Name	English Name	Risk Factor	breakdown	factors
ACER pseudoplatanus	SYCAMORE	5.2%	3.42%	0.2%
ALNUS	ALDER	5.2%	3.87%	0.2%
BETULA	BIRCH	9.2%	26.89%	2.5%
CORYLUS	HAZEL	5.2%	2.39%	0.1%
FRAXINUS	ASH	90.1%	8.53%	7.7%
PICEA sitchensis	SITKA SPRUCE	4.7%	5.40%	0.3%
PINUS sylvestris	SCOTS PINE	1.8%	10.86%	0.2%
PRUNUS avium ssp./var. avium	WILD CHERRY	2.9%	2.00%	0.1%
QUERCUS	OAK	2.2%	15.89%	0.4%
SALIX	WILLOW	5.2%	3.09%	0.2%
SORBUS	ROWAN	2.9%	4.19%	0.1%
TOTAL:			<u>86.52%</u>	<u>11.8%</u>

- NB: Skewed by Ash *chalara*. Also Birch a pioneer species (ratio may change)
- Early days .. 10% upper boundary not unreasonable assuming will reduce Ash?

Initial findings

- Need different risk assessments for e.g. timber, carbon, health
- Risks for carbon are very different
 - Consider over longer timescales: 100 year project vs timber rotation e.g. 40 yrs
 - Quality of timber not an issue e.g. oak pinhole borer stains timber but not a major killer
 - Oak processionary moth high focus due to human health risk again not a killer
 - If trees removed some timber can be recovered but carbon credits cancelled
- "Best" scenario for carbon kills whilst young! E.g. Large brown pine weevil – currently widespread across UK, assume (Sitka): 25% mortality, <8yrs - RF: 0.4%
- "Worst" scenario: fast spreading P&D, high mortality, arriving late e.g. Bronze Birch Borer – 15 yrs to cover UK, resistance unknown - 90% mortality? RF: 3.57%
- Risk dominated by a few key threats with potential to cause widespread devastation to a range of species e.g. Asian/Citrus Longhorn Beetles

Other benefits ...

 Identified key information missing from Pest Risk Assessments for risk assessment! Especially: % likelihoods of arrival and establishment and % mortality / % yield reduction figures in PRAs.

(NB: overwrite values as better information becomes available)

- Confirmed that key threats are P&D arriving later in the project duration so inform decisions on early releases from the buffer
- Highlights advantages of greater species diversification within the portfolio
- Flexible tool to support /inform discussion on the WCC P&D risk buffer
- Potential to support other purposes broader plant health analyses, economic evaluations, insurance etc

In conclusion..

 Represents a significant step forward in the ability to understand the future threats to UK forests from P&D. A first attempt to develop a model with the potential to reduce complexity and systematically quantify the future threat from all known P&D threats and to combine this information into an overall quantitative risk assessment that can be used to support management decisions and policy.

Next phase

- Aims:
 - Assess remaining pests and diseases
 - Embed the outputs into operational procedures for WCC
 - Expand to cover timber projects
 - Develop decisions support tools
 - Pilot the development of new insurance products.
 - Why? Because "risk measurement is NOT risk management"

Thank you!

• Thank you to ICF for the opportunity to present our work

Contacts University of Edinburgh: Susan Davies, <u>susan.davies@ed.ac.uk</u> Dr Genevieve Patenaude (PI), <u>genevieve.patenaude@ed.ac.uk</u>

Contacts Forestry Commission:

Dr Pat Snowdon, Forestry Commission, pat.snowdon@forestry.gsi.gov.uk

