

Learning from Experience of Crop Diseases: the Tree Health & Plant Biosecurity Initiative

James Brown John Innes Centre, Norwich, U.K. james.brown@jic.ac.uk

Summary of this talk

- Introduction to Tree Health & Plant Biosecurity Initiative
- Lessons from research on crop diseases for forest health
- Progress in research on ash dieback

Tree Health & Plant Biosecurity Initiative

Phase 1. 2011-2013: Capacity & consortium-building Phase 2. 2014-2017: 7 research projects

- Innovative ways of dealing with pests & pathogens
- Health & resilience of trees, woods & ecosystems
- Collaboration of tree health specialists and others
 Phase 3. 2015-2018
- 1 project each on (A) oak and (B) *Phytophthora*

1. Quarantine: keep undesirables out including "unknown unknowns"

New approaches for the early detection of tree health pests and pathogens

Project lead: Rick Mumford (<u>rick.mumford@fera.co.uk</u>) Key Objectives:

- Improved tools for early detection of tree pests & pathogens.
- Exploit technical advances in e.g. genomics & engineering.
- Interdisciplinary: plant health + physics, engineering & economics.

WORKPACKAGES:

1	2	3	4	5	6
Lead: Mariella Marzano, FR	Lead: Steve Woodward, Aberdeen	Lead: Hugh Mortimer, RAL	Lead: Neil Boonham, Fera	Lead: David Hall, NRI	Lead: David Cooke, JHI
Interdisciplinary approaches ('The Learning Platform')	Volatiles Detection	Multispectral Imaging	Spore trapping	Pest Trapping	Water surveillance

2. The perils of monoculture Conversely, crop diversity slows spread of disease

Modelling economic impact and strategies to increase resilience against tree disease outbreaks

- Construct a novel mathematical modelling framework incorporating
 - epidemiological,
 - ecological, and
 - economic factors
- to determine
 - resilience to disease, and
 - supply of ecosystem services.

Adam Kleczkowski Ciara Dangerfield Christopher Gilligan Nicholas Hanley John Healey Steven Hendry Morag McPherson

Promoting resilience of UK tree species to novel pests and pathogens: ecological and evolutionary solutions

Using Scots pine as a case study Assess genetic variation in resistance to 3 key threat species:

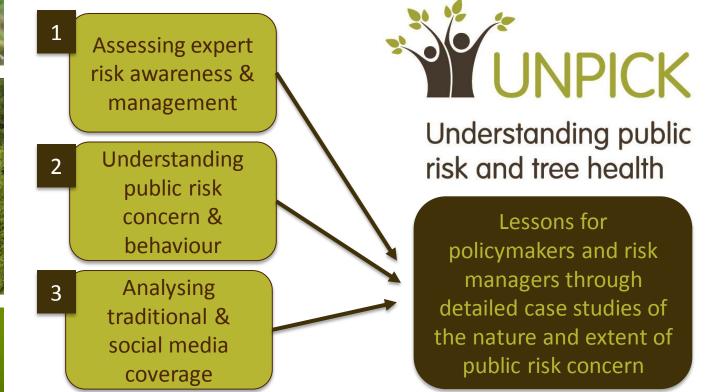
- Dothistroma Needle Blight (Present, widesprea
- Pinetree Lappet moth
- Pine pitch canker

(*Present, widespread*) (*Present, localised*)

(Not present, potential)

Identify / test management strategies & communicate results

Contact: Stephen Cavers, scav@ceh.ac.uk



Ramorum

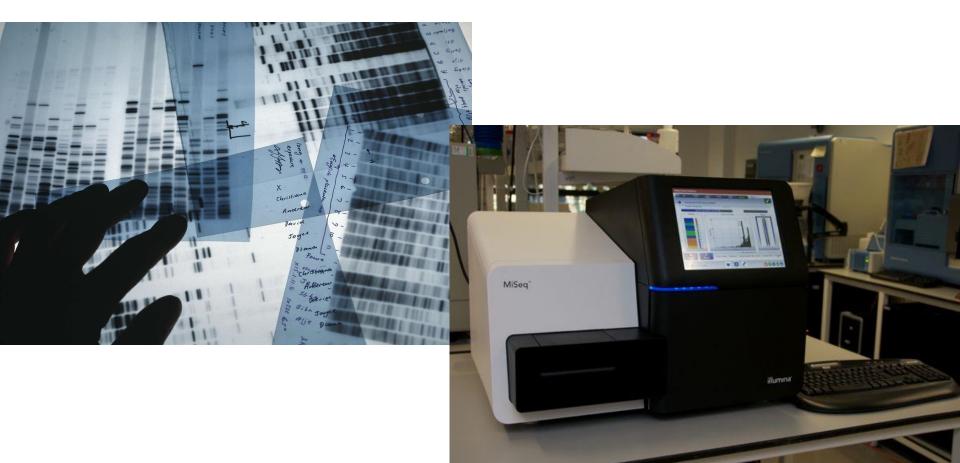
3. Public appreciation of science

Respect public concerns & explain science honestly

www.imperial.ac.uk/unpick

Contact: Clive Potter – c.potter@imperial.ac.uk

Imperial College London



Forest Research

4. Genomics

 Vastly accelerating our ability to ask significant biological questions



Identifying genomic resources against pests and pathogens in tree genera: a case study in *Fraxinus*

Dr Richard Buggs & Prof Steve Rossiter: Genome sequencing and phylogenomics of whole ash genus

Dr Jennifer Koch: Screening of species' susceptibility to emerald ash borer

Dr Paul Jepson: Public opinion on genetic solutions to tree health issues

5. We need to understand biology of pathogens & ecology of disease

Biological Control of Insect Pests that Threaten Tree Health (BIPESCO)

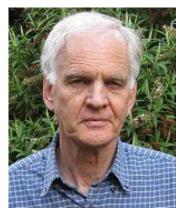
Entomopathogenic fungi (EPF) and botanicals to control insect pests in forestry

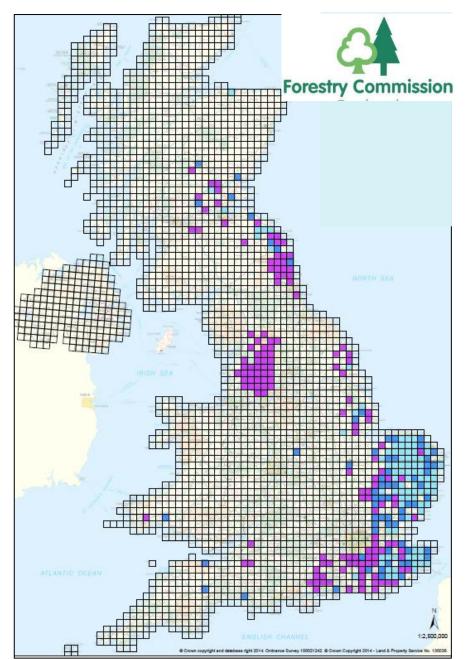
Coordinator: Professor Tariq M. Butt, Dept. Biosciences, Swansea University

Targets: Asian longhorn beetle, Pine processionary moth, Pine weevil, Black vine weevil

Consortium: Swansea University (lead), Fera, Forest Research & industry

Industry: Manufacturers of EPF, botanicals & monitoring tools + nurseries & forestry groups - Lisk & Jones Consultants, Sentomol, Greenerpol, Fargro, UPM, Maelor Forest Nurseries, Bord na Mona, MycoSolutions


Population structure and natural selection in the ash dieback fungus



Elizabeth Orton

Anuradha Bansal + *Lorelei Bilham*

Joan Webber

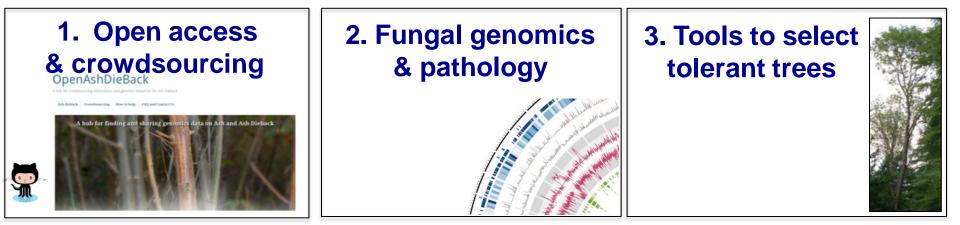
Clive Brasier

Natural infections of *Hymenoscyphus fraxineus* in the UK

First UK observation in 2012 but probably present since 1990's

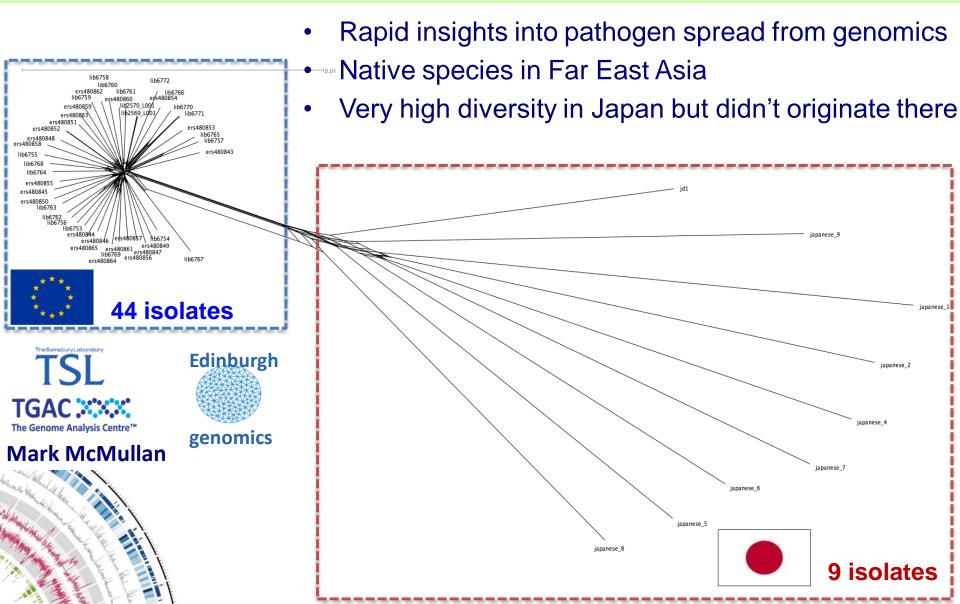
> 2012 2013 2014

Damage caused by ash dieback


The NORNEX Research Consortium

Funding: BBSRC and Defra

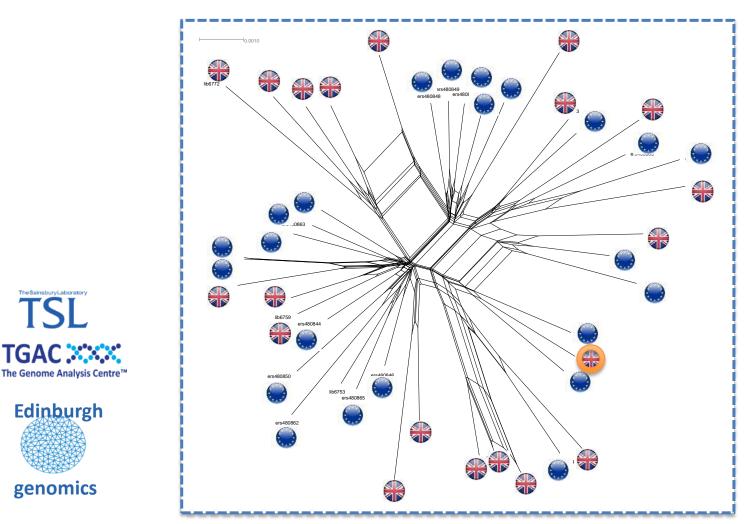
NERC


Queen Mary

Building 21st century tools for a 21st century disease

Hymenoscyphus fraxineus genomics

Hymenoscyphus fraxineus **European and UK genomes**


ISI

TGAC 🔀

Edinburgh

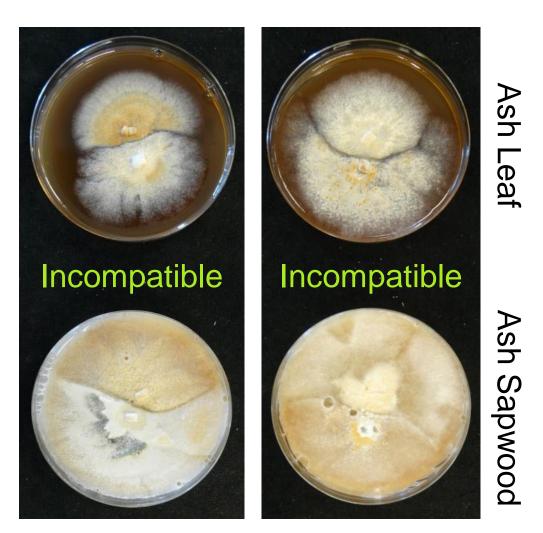
genomics

Data on genetics of fungus show that it has moved between the UK and Europe frequently and in large numbers

Aim of JIC / FR ash dieback project

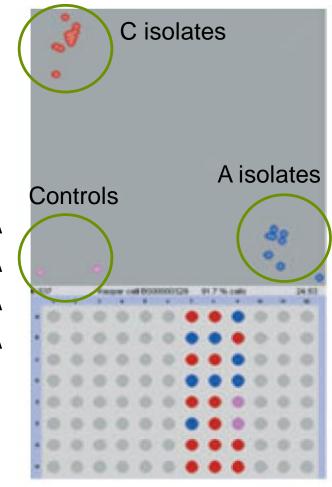
 How well & how quickly will UK ashwoods recover from the dieback epidemic?

Attenuated: myxomatosis Severe & destructive: D.E.D.


Genetic structure of *Hymenoscyphus fraxineus* populations in UK

Within woods & within infected trees

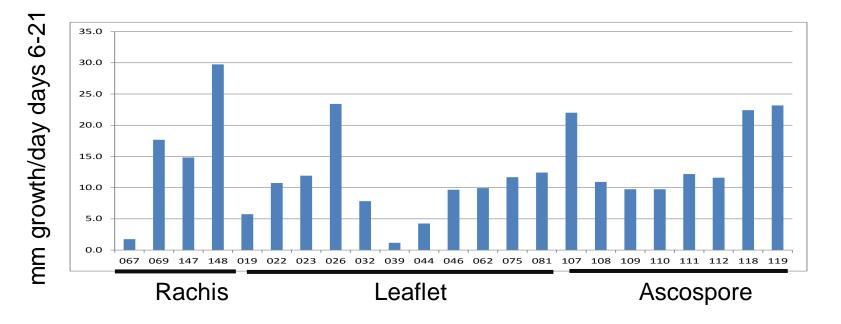
<u>Diversity in dieback fungus:</u> Vegetative compatibility defines individuals – very high diversity in UK


Diversity in dieback fungus: Genetic variation between fungal isolates

<u>Kompetitive Allele Specific PCR (KASPar)</u> Developed by K-Bioscience

Tests variation in single bases of DNA Using genome sequences from Nornex

Isolate 1 CTGTAGGCATGTCCATGACTGAA Isolate 2 CTGTAGGCATGTCCATGACTGAA Isolate 3 CTGTAGGCATGTACATGACTGAA Isolate 4 CTGTAGGCATGTCCATGACTGAA


High diversity whether trees grown from diseased planting stock or infected by wind-blown spores from continent

Trade-offs of pathogenicity

- Main predictor of a mild outcome of epidemic
- Isolates with range of growth rates on Ash Leaf Agar
- Will test relationship to wide range of other traits

Relationship to Hymenoscyphus albidus

- Native non-pathogenic fungus
- Closely related to H. fraxineus
- Genetic & biological diversity
- How do *H. fraxineus* and *H. albidus* interact?
- Will it help us to predict longterm outcome of ash dieback?

Ash dieback in the long term: natural selection in action

- Massive production of fruiting bodies & windborne spores
- If seed from resistant trees is allowed to spread, ash may re-establish as a major broadleaf tree
- (if there are costs of pathogenicity in the fungus)

6. We need a long-term commitment to rebuilding expertise in forest pathology in UK

Acknowledgements

Elizabeth Orton

Anuradha Bansal, Lorelei Bilham

Clive Brasier, Joan Webber

Nornex member organisations: especially JIC, TGAC, Exeter U.

